信息科學技術學院数学系學術講座(六十二、六十三)

發布單位:成果專利綜合科 [2019-11-08 16:06:43] 打印此信息

題目一:Global stability of large solutons to 3D compressible Navier-Stokes equations

內容簡介:In this talk, we investigates the global stability of large solutions to the compressible NavierStokes equations in the whole space. Under the assumption that the density ρ(t, x) verifies ρ(0, x)  c > 0 and supt0 ∥ρ(t)Cα ≤ M with α arbitrarily small, we establish a new approach for the convergence of the solutions to its associated equilibrium with an explicit decay rate which is the same as that for the heat equation. Then we prove the global-in-time stability for the equations, i.e, any perturbed solu- tions will remain close to the reference solutions if initially they are close to one another. This implies that the set of the smooth and bounded solutions is open.

報告人:清華大學何淩冰教授

報告人簡介:博士畢業于中科院,主要研究方向爲Boltzmann方程及Landau方程解的正則性傳播和漸進性行爲。近五年先後在Archive for Rational Mechanics and AnalysisCommunications in Mathematical PhysicsSIAM Journal on Mathematical AnalysisJournal of Functioal AnalysisJournal of Differential Equations  J. Stat. Phys.等國際主流數學雜志發表論文20余篇。

 

題目二:Recent results on global well-posedness of Boussinesq system

內容簡介:In this talk, I shall introduce some recent well-posedness of the 2D Boussinesq equations with anomalous dissipation terms. I shall also examine the global regularity problem on the two-dimensional incompressible Boussinesq equations with fractional or partial dissipation and variable coefficient depending on temperature in R^2 or bounded domain. The goal is to establish the global existence and regularity for the Boussinesq equations with minimal dissipation.

報告人:北京師範大學許孝精教授

報告人簡介:2005年在吉林大學獲得博士學位,2012年被聘爲博士生指導教師。主要從事偏微分方程及其應用方向的研究,重點研究來自流體動力學中的偏微分方程組的適定性。2007年博士論文被評爲“吉林省優秀博士學位論文”。主持並完成中國博士後科學基金,國家自然科學基金—青年科學基金,以及國家、北京市自然科學基金—面上項目各1項。現正在主持國家自然科學基金—面上項目1項。曾獲北京師範大學勵耘優秀青年教師一等獎。與袁洪君教授合作編寫本科生教材《數學物理方程》(教育部“十一五”國家級規劃教材)一部,完成學術論文50余篇,已發表的論文45篇,其中被SCI檢索的論文有40篇,有12篇論文發表在J. Math.Pures Appl., SIAM J. Math.Anal. NonlinearityJ. Nonlinear Science以及J. Differential Equations雜志上。被引用次數達310余次。曾在法國、美國、加拿大、波蘭和香港等地區進行學術訪問十余次。

 

  間:20191110日(周日)上午930

  點:南海樓224

 

熱烈歡迎廣大師生參加!

 

 

信息科學技術學院

2019118